Dynamics of a family of third-order iterative methods that do not require using second derivatives
نویسندگان
چکیده
The purpose of this article is to present results that amount to a description of the conjugacy classes of three third–order root–finding iterative methods that do not require the use of second derivatives for their formulation, for complex polynomials of degrees two, three and four. For degrees two and three, a full description of the conjugacy classes is accomplished, in each case, by a one–parameter family of polynomials. This is done in such a way that, when one applies one of these three root–finding iterative methods to the elements of these parametrized families, a family of iterative methods is obtained, in such a way that its dynamics represents, up to conjugacy, the dynamics of the corresponding iterative root–finding method applied to any complex polynomial having the same degree. For degree four, analogous partial results are obtained.
منابع مشابه
THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملSome iterative methods free from second derivatives for nonlinear equations
In a recent paper, Noor [M. Aslam Noor, New classes of iterative methods for nonlinear equations, Appl. Math. Comput., 2007, doi:10.1016/j.amc:2007], suggested and analyzed a generalized one parameter Halley method for solving nonlinear equations using. In this paper, we modified this method which has fourth order convergence. As special cases, we obtain a family of third-order iterative method...
متن کاملNew families of nonlinear third-order solvers for finding multiple roots
In this paper, we present two new families of iterative methods for multiple roots of nonlinear equations. One of the families require one-function and two-derivative evaluation per step, and the other family requires two-function and one-derivative evaluation. It is shown that both are third-order convergent for multiple roots. Numerical examples suggest that each family member can be competit...
متن کاملA Third Order Iterative Method for Finding Zeros of Nonlinear Equations
In this paper, we present a new modification of Newton's method for finding a simple root of a nonlinear equation. It has been proved that the new method converges cubically.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 154 شماره
صفحات -
تاریخ انتشار 2004